Skip to content

Pregel Implementation in IbisGraph

Overview

This document explains how IbisGraph implements Pregel-like graph processing using SQL operations. The implementation translates Pregel's vertex-centric computation model into a series of SQL operations that can run in any data warehouse or data lake supported by Ibis.

What is Pregel?

Pregel is a system for large-scale graph processing introduced by Google. It uses a vertex-centric approach where:

  1. Each vertex can store state
  2. Vertices communicate through messages
  3. Computation proceeds in synchronized iterations (supersteps)

In each superstep:

  1. Vertices receive messages from the previous superstep
  2. Update their state based on received messages
  3. Send messages to other vertices for the next superstep

SQL Translation

IbisGraph translates this model into SQL operations. Here's a visualization of how a typical superstep works:

Initial State:
Table: vertices
+----+-------+
| id | value |
+----+-------+
| 1  | 0.2   |
| 2  | 0.3   |
| 3  | 0.5   |
+----+-------+

Table: edges
+------+--------+
| from | to     |
+------+--------+
| 1    | 2      |
| 2    | 3      |
| 3    | 1      |
+------+--------+

Superstep:
1. Generate messages:
   SELECT 
     e.to as target,
     v.value as message
   FROM vertices v
   JOIN edges e ON v.id = e.from

2. Aggregate messages:
   SELECT
     target,
     SUM(message) as agg_message
   FROM messages
   GROUP BY target

3. Update vertices:
   SELECT
     v.id,
     CASE 
       WHEN m.agg_message IS NULL THEN v.value
       ELSE function(v.value, m.agg_message)
     END as new_value
   FROM vertices v
   LEFT JOIN messages m ON v.id = m.target

Key Components

1. Graph State

  • Vertex data stored in regular SQL tables
  • Edge data stored in source-target format
  • Additional columns can store vertex/edge attributes

2. Message Passing

Implemented through: 1. JOIN operations between vertex and edge tables 2. Message generation expressions 3. GROUP BY for message aggregation

3. Vertex State Updates

Performed using: 1. LEFT JOIN to preserve vertices that receive no messages 2. UPDATE expressions defined by the algorithm 3. Optional active vertex tracking

4. Halting Conditions

Multiple stopping criteria available: - Maximum iterations reached - No messages generated - All vertices vote to halt - Custom convergence conditions

Performance Considerations

Advantages

  1. No Data Movement

    • All processing happens in the data warehouse
    • No need to extract data or maintain separate systems
  2. Scalability

    • Inherits data warehouse scaling capabilities
    • No single-machine memory limitations
  3. Integration

    • Natural integration with SQL-based data pipelines
    • Can leverage existing warehouse optimizations

Limitations

  1. Iteration Overhead

    • Each superstep requires multiple SQL operations
    • More expensive than native graph processing
  2. Message Handling

    • Message generation can create large intermediate results
    • Aggregation performance depends on warehouse capabilities
  3. State Management

    • Vertex state changes require table updates
    • May need careful tuning of checkpoint intervals

Implementation Details

Active Vertex Tracking

# Example of active vertex tracking
pregel.set_has_active_flag(True)
      .set_initial_active_flag(initial_condition)
      .set_active_flag_upd_col(update_condition)

Message Generation

# Example of message generation
pregel.add_message_to_dst(
    ibis.case()
        .when(condition, message_value)
        .else_(None)
)

Vertex Updates

# Example of vertex state update
pregel.add_vertex_col(
    "value",
    initial_expr=initial_value,
    update_expr=update_function(old_value, message)
)

Optimization Tips

  1. Checkpoint Intervals
  2. For single-node backends (DuckDB, SQLite):
    pregel.set_checkpoint_interval(1)
    
  3. For distributed engines (Spark, Snowflake):

    pregel.set_checkpoint_interval(5)  # or higher
    

  4. Message Filtering

    # Filter messages from inactive vertices
    pregel.set_filter_messages_from_non_active(True)
    

  5. Early Stopping

    # Stop when no new messages or all vertices inactive
    pregel.set_early_stopping(True)
    pregel.set_stop_if_all_unactive(True)
    

Example: PageRank Implementation

Here's how PageRank is implemented using this Pregel framework:

def page_rank(graph: IbisGraph, alpha: float = 0.85) -> ibis.Table:
    n_nodes = graph.num_nodes
    initial_rank = 1.0 / n_nodes

    pregel = (
        Pregel(graph)
        .add_vertex_col(
            "rank",
            initial_expr=initial_rank,
            update_expr=alpha * pregel.pregel_msg() + (1 - alpha) / n_nodes
        )
        .add_message_to_dst(
            pregel.pregel_src("rank") / pregel.pregel_src("out_degree")
        )
        .set_agg_expression_func(lambda msg: msg.sum())
    )

    return pregel.run()

This implementation shows how Pregel concepts map to SQL operations while maintaining the algorithm's logical structure.

Best Practices

  1. Message Volume

    • Filter unnecessary messages when possible
    • Use appropriate aggregation functions
    • Consider using active vertex tracking
  2. State Management

    • Keep vertex state minimal
    • Use appropriate data types
    • Consider compression for large state
  3. Performance Tuning

    • Adjust checkpoint intervals based on backend
    • Use appropriate convergence conditions
    • Monitor intermediate result sizes

Debugging Tips

  1. Message Generation

    • Use pregel_src() and pregel_dst() helpers
    • Check for NULL values in messages
    • Verify message targeting
  2. State Updates

    • Validate initial state expressions
    • Check update logic with edge cases
    • Monitor convergence patterns
  3. Performance Issues

    • Check execution plans
    • Monitor intermediate result sizes
    • Verify checkpoint interval settings